
II

Extraction de Surfaces





81





Chapter 4

Modèles Déformables pour

l’Extraction de Surfaces en

Imagerie Médicale

Résumé — Dans ce chapitre, nous revenons sur différentes méthodes d’extraction
de surface en imagerie médicale. Partant du déjà connu modèle des snakes de
Kass, Witkin, et Terzopoulos [82], en section 4.1, nous présentons des méthodes
basées sur une représentation explicite de la surface, comme dans les travaux de
Delingette [38]. Nous étudions ensuite en section 4.2 une représentation implicite de
la surface, à partir des travaux de Caselles, Kimmel, et Sapiro [22]. Nous détaillons
l’implémentation de ces contours actifs géodésiques dans la section 4.3, à partir de la
méthode des Ensembles de Niveaux, développée et amplement détaillée dans le livre
de Sethian [163]. On s’intéresse en section 4.4 à définir un modèle abstrait pour nos
applications, et on poursuit par son implémentation à l’aide de modèle déformables
explicites puis implicites. Nous présentons par la suite l’utilisation du Fast-Marching

comme algorithme de segmentation dans la section 4.5, et nous détaillons les appli-
cations existantes de cette méthodologie à des problèmes classiques de segmentation
en imagerie médicale 3D à la section 4.6.

Abstract — In this chapter, we recall the different methods used for surface
extraction in medical imaging. Starting from the already studied snakes framework
of Kass, Witkin, and Terzopoulos [82] in section 4.1, we mention methods based on
explicit representations of the shape, as done by Delingette [38]. Thus we extend in
section 4.2 to implicit representations of the shape, proposed by Caselles, Kimmel,

and Sapiro [22]. We detail implementation of those Eulerian active contours in
section 4.3, using the level-sets methodology developed extensively by Sethian [163].
We develop an abstract deformable model for our applications in section 4.4, and we
follow by implementations of this framework with explicit and implicit deformable
models. We further detail the use of the Fast-Marching method to segmentation
tasks in section 4.5. And we detail several applications of this methodology to
medical image segmentation problems in section 4.6.
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4.1 Classical Active Contours

4.1.1 Definition

We recall the Snake model as introduced in [82], and already mentioned in chapter 1.
For a general overview on deformable models, see [115]. See also a description and
references in [30].

The classical energy of the model which will be minimized on A the space of all
admissible curves, and has the following form:

E : A → IR

C 7→ E(C) =

∫

Ω

w1

2
‖C′(v)‖2 + w2

2
‖C′′(v)‖2 + P (C(v))dv

where Ω = [0, 1] is the parameterization interval. This model is used in the classical
formulations of deformable models [32, 102].

In this formulation, each term appears as a potential acting on the shape. Thus
the mechanical properties of the deformable model are controlled by two kinds of
constraints:

• The internal potential: C ′ and C ′′ are the smoothing terms on the curve. They
enable to control its regularity by means of w1 which quantifies its rigidity and
w2 its elasticity;

• The external potential term P represents the likelihood. This “image” potential
traps the curve towards the regions with desired attributes.

Figure 4.11 displays iterations of the heart segmentation in a 3D ultrasound image
of the heart, with simplex meshes.

4.1.2 Drawbacks

The main drawbacks of the classical deformable model approach are:

• Minimization: The functional is non-convex, and one difficulty is to find a good
local minimum. Spurious edges generated by noise may stop the evolution of
the surface, giving an insignificant local minimum of the energy;

• Initialization: The user must specify an initial shape that is close to the goal,
like a very precise polygon approximation, which may be tedious to draw;

• Topology changes: this method is unable to segment several objects simultane-
ously, and to merge different shapes;

One of the main issue in using deformable models is their initialization and mini-
mization. The solution introduced in [163] allows to solve the global minimization of
a problem. His approach considers a slightly modified problem: a curve is considered
as an interface between two media, following a particular evolution equation. We
will see that under precise assumptions, this front evolution efficiently builds a path
between two fixed points, as detailed in [34].

1Slice of a 3D ultrasound dataset acquired with a multi-plane trans-oesophagus scan-head on a
HDI 5000 ATL echograph.
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Figure 4.1. Samples of the segmentation of a heart in a 3D ultrasound
image with simplex meshes [37] : Starting with a sphere interpolated with
simplex mesh faces, we segment a heart in a 3D ultrasound image: first row shows
the intersection of the mesh with a slice of the dataset, and second row is the 3D
model at the same iterations.

4.2 Geodesic Active Contours

A geometric approach for deformable models was introduced by Caselles, Catté and

Dibos [21] and Malladi, Sethian and Vemuri [113]. The basic idea of the geometric
model is that the curve follows an evolution by expansion in the normal direction,
with lower speed when the image force P (C) is small. Hence the evolution of a planar
curve C is in the direction of its normal only is given by

∂C(s, τ)
∂τ

= P (C)(∂
2C
∂s2

+ w n) = P (C)(κ+ w)n, (4.1)

where s is the arc-length parameter of the curve C, κ is the curvature, n is the unit
normal. The constant term w is similar to the balloon force introduced in the snakes
model [29] (and also related to the dilatation transform in mathematical morphology
and the grass-fire transform [102]).

It was shown that the geometric snakes model handles topology changes better
than the classical snakes when implemented with the level set approach for curve
evolution proposed by Osher and Sethian [135, 158].

But, due to the formulation of the image force, it never comes to a complete stop,
and heuristic stopping procedures are used to switch off the evolution process when
an edge is reached. In equation (4.1), the geometric snake evolution is slower when
the P is small but the curve does not necessary stop completely at the boundary,
since it never reaches an equilibrium.

Given an initial curve C(s, 0), the geodesic active contours is based on the planar
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evolution equation

∂C(s, τ)
∂τ

= (P (C)(κ+ w)− 〈∇P,n〉)n, (4.2)

where s is the arclength. The ∇P term added, in comparison to the geometric model,
is a projection of the attraction force −∇P on the normal to the curve. This force
balances the other term close to the boundary and causes the curve to stop there.

This introduction of ∇P , based on geometrical as well as energy minimization
reasoning, leads to the “geodesic active contour” proposed by Caselles, Kimmel and

Sapiro [23]. The geodesic active contours enjoy the advantages of classical as well as
geometric active contours, since it handles topology changes and reaches an equilib-
rium which is similar to the classical snakes.

The curve evolution equation is then reformulated and implemented using the
Osher-Sethian numerical algorithm [135]. Similar geometric models were also intro-
duced in [85, 183, 165, 149] and extended to color and texture in [153].

4.3 Level-Sets Implementation of the Geodesic Ac-

tive Contours

Let Co(p) be a closed initial parameterized planar curve in an Euclidean plane, and
C(p, t) the family of curves generated by the movement of C0(p) in the direction of
its outward Euclidean normal vector n. The speed of this movement is supposed to
be a scalar function of the curvature κ:

{

∂C
∂t
(p) = F (κ)n

C(p, 0) = C0(p)
(4.3)

A Lagrangian approach might be considered to implement the curve evolution ac-
cording to the above equations in motion equations of the discretized positions of
C(p).

But this formulation has several drawbacks. When tracking the motion of the
interface C propagating along its normal direction with velocity F , most numerical
techniques rely on markers, breaking it up into points connected by segments, and
moving each point with speed F (see figure 4.2-left). The solution is supposed to gain
in accuracy if the number of points is increased. Problems arise if different parts of
the front cross each other, or if the shape tries to break into two pieces (see figure 4.2-
middle and the book of Sethian [163] for details) or if two shapes try to merge into
one (see figure 4.2-right).

Therefore, the main drawback of this approach is that the evolving model is not
capable to deal with topological changes of the moving front, and external procedures
must be added to detect and deal with merging and splittings. These methods were
developed for active contour models, namely Topological Snakes (T-snakes) in [114],
for triangulated meshes in [97], and for their dual simplex meshes in [121]. There is
no suitable difference approximation scheme for the Lagrangian implementation, due
to the time-dependent parameterization of the curve model, thus leading to stability
problems.
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Cross-over

t

t + 1

Collision

Figure 4.2. Markers methods and related problems: Left image illustrates
the markers technique. Middle image shows the cross over which occur frequently.
Right image shows problems of merging two contours.

These problems are handled very elegantly by the level set methodology, originally
introduced by Osher and Sethian in [135], and now widely used in lots of applications,
ranging from computer vision problems, to semiconductor manufacturing, shape from
shading, and robotic navigation (see [163]). They embed the initial position of the
moving interface C0(x) as the zero level set of a higher dimensional function φ (the
signed distance to C0, as shown in figure 4.3), and link the evolution of this new
function φ to the evolution of the interface itself through a time-dependent initial
value problem. At each time t, the contour C(t) is given by the zero level-set of φ.

Figure 4.3. Embedding the contour in the signed distance: In this 2D
example, the initial contour C0(x, y) is a circle, and φ(x, y, 0) = ±d(C0((x, y)).

This condition states that

φ(C(t), t) = 0⇒ φt +∇φ(C(t), t) · ∂C
∂t
= 0 (4.4)

Since ∂C
∂t
= Fn and the outward normal vector is given by ∇φ

|∇φ| , this yields the

following evolution equation for φ given in [135]:
{

φt + F |∇φ| = 0
φ(x, 0) = C0(x)

(4.5)

4.3.1 Advantages of this formulation

There are several advantages associated with the Level-Sets paradigm:



88 4 Deformable Models for Surface Extraction in Medical Imaging

1. This formulation remains unchanged in higher dimensions, as well for 2D curves,
as for hypersurface in three dimensions (and higher). Therefore the embedded
hypersurface will be denoted Γ in the following.

2. The evolving function φ remains a functions as long as F is smooth. As a conse-
quence, topological changes in the evolving front Γ(x, t) are handled naturally,
the position of the front at time t is given by the zero level-set φ(x, t) = 0 of the
evolving function φ. Γ(x, t) can be several initial curves and it can break and
merge as t advances. A 2D examples of fronts merging is shown in figure 4.4.

Figure 4.4. Easy handling of contour merging with Level-Sets : Γ(x, y, t =
0) is the representation of the three curves. Initializing φ by the distance to these
circles, and propagating φ with a constant positive speed in the outward normal
direction, φt+β|∇φ| = 0, the three circles increase and merge. The different images
represent the zero level-set of φ at several successive iterations.

3. Intrinsic geometry properties of the front are easily determined from the front
itself, like the normal to the front ∇φ

|∇φ| , and the curvature of the front κ =

∇ · ∇φ|∇φ| .

4. The evolution equation (4.5) can be approximated by efficient computational
schemes with finite different approximation for the spatial and temporal deriva-
tives. Explicit finite difference approach is possible, and other implicit and
semi-implicit approaches have been already developed [65]

Explicit representation of the surfaces can also handle topology changes. Several
attempt to achieve this tasks were developed independently.

• McInerney and Terzopoulos [114, 116] propose the “T-snakes” and “T-surfaces”
with adaptive topology; the initial model is a triangulation that evolved accord-
ing to a Lagrangian evolution equation, and the triangulation is resampled by
computing its intersection with a tetrahedral griding of the image domain. By
defining an “inside” and an “outside” region, the resampling handles topology
changes when the surface self-intersect; this ad-hoc approach is limited to closed
contours and surfaces.

• Lachaud et al. [98, 97] propose a very interesting technique based on the distance
between each vertices of the triangulation. But knowing this distance between
each pair of nodes is a huge computing task;
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• Montagnat and Delingette [39, 40, 121] propose topological changes based on
the simplex mesh surface representation [37]. This method that resamples the
surface on a regular grid of the image domain works well in 2D and works with
low computation times, but no 3D extension is available for the moment.

The different methods mentioned are all proposing methods to adapt the topology
of their objects. This method has advantage of reducing the importance of the a priori

on the final shape of the target of the segmentation process. Therefore, the topology of
the model at initialization do not need to be the same than the model at convergence,
thus reducing user interaction. But these methods are based on approximations,
while the Level-Sets formalism handles naturally this problem. The Level-Sets model
is evolved, and its zero level-set can be represented at several iterations, as shown in
figure 4.4. But this implicit representation has one major drawback: it severely limits
the possible interactivity of the user on the model, as mentioned in [120]. However,
we will see in the next chapter that some basic interactions can be applied to this
formalism.

4.3.2 Different Motions of the interface

The evolution of the segmentation is performed through the evolution of φ, which is
done by a flow equation:

∂φ

∂t
+ F |∇φ| = ∂φ

∂t
+V · ∇φ = 0 (4.6)

if we consider the vector flow field V(x, t) with (x, t) ∈ Ω × [0,+∞[, which evolves
φ(·, t).

Scalar flow

Any flow of the form:
V = β(x, t)n with β(x, t) ∈ IR (4.7)

will be referred as a scalar flow. Evolution under (4.6) with positive (resp. negative)
values for β yields to a normal dilatation (resp. shrinkage) of φ(0, t). Figure 4.8
displays iterations of a front, initialized with the distance to a circle, evolving under
an inflating term. In figure 4.5, φ is evolved with β = −1 in the expression of the
scalar vector field of equation (4.7). Scalar flows lead to non-linear flow equations.

Vector Flow

Any flow of the form:
V = U(x, t) with U(x, t) ∈ IRd (4.8)

and no dependency on φ will be referred to as a vector flow, or vector flow field.
Evolution under (4.6) corresponds to passive advection of the level sets of φ(·, t).
Figure 4.6 displays iterations of a front, initialized with the distance to a circle,
evolving under the influence of an advection flow only with U(x, y, t) = u = (1, 1).
The resulting contour is implicitly moved, in the direction of the vector u. Vector
flows lead to linear flow equations.
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Figure 4.5. Inflating force: First row images are consecutive iterations of the
Level-Sets evolution under external forces only; The external forces are built using
the gradient of a left-ventricle image; Bottom row shows the zero level-set superim-
posed on the gradient magnitude at the same iterations.

Curvature motion

Any flow of the form:

V = −ε(x, t)κM (x, t)n with ε(x, t) ∈ IR (4.9)

will be referred to as a curvature flow. Evolution under equation (4.6) with positive
values for ε yields to a local regularization of φ(0, t). Negative values for ε lead
to instabilities. Figure 4.7 displays iterations of a front, initialized with the signed
distance to an initial curve, evolving under the influence of its curvature only, using
the level set equation with a speed function of the form F (κ) = −κ

φt = κ|∇φ| =
[

∇ · ∇φ
|∇φ|

]

|∇φ| (4.10)

If we let the iterations proceed, the zero level-set (in black) will tend to a circle, and
shrink to a point before vanishing. Equation (4.10) applied to this image illustrates
Grayson’s theorem that all simple closed curves moving under its curvature must
shrink to a point (as shown in [70]), regardless of its initial shape. This motion
resembles a non-linear heat equation (see [163]) and smoothes large oscillations, and
can be used in curve extraction as a diffusion term, to relax boundaries. Curvature
flows lead to non-linear flow equations.

Composite flow

Any flow which is the sum of flows of the preceding types will be referred to as a
composite flow. Figure 4.8 displays iterations of a front, initialized with the distance
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Figure 4.6. Advection flow: the level sets are represented using a colored ladder;
the zero level-set is implicitly defined by the intersection between the levels and the
white plan at height zero.

Figure 4.7. Curvature motion: the zero level-set (in black) and all the other
levels evolve according to their curvature.

to a circle, evolving under the following equation:

φt + gI(1− εκ)|∇φ| − β∇P · ∇φ (4.11)

where the equation contains the following terms:

1. an inflating force, as in equation (4.7), here defined by

gI(x) =
1

1 + |∇Iσ(x)|
(4.12)

where Iσ is the image convolved with a Gaussian kernel of size σ; this inflating
force vanishes to zero in region of high gradients (i.e. near object boundaries)

2. a curvature term −gIεκ which controls the smoothness of the iso-contours of
φ(·, t), originally introduced in [112];
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3. an external force, which role is to attract the surface towards the boundary of
the object of interest. This term is a vector flow which denotes a projection of
an attractive force vector on the surface normal, in our case we use a potential
field defined as in [22], by

P (x) = −|∇Iσ(x)| (4.13)

Figure 4.8. Composite flow: First row images are consecutive iterations of the
Level-Sets evolution under the equation (4.11); the external forces are built using the
gradient of a left-ventricle image; bottom row shows the zero level-set superimposed
on the gradient magnitude at the same iterations.

4.4 Region-based forces

In this chapter we present a variational framework for the segmentation on the basis
of the geodesic contour implementation of region-based forces. This framework has
been used in the following parts of the thesis.

4.4.1 Partitioning the image domain

Region-based terms have already been included in active contour models [148, 27, 25,
24] We consider an abstract deformable model, which consists of a partition of the
image domain Ω into three subsets: two open subsets Ωin(t) and Ωout(t) (the inside
and the outside of the segmented object) and their common boundary Γ(t). Γ(t) is
supposed to be as smooth as necessary (for example we may suppose that Γ(t) is a
locally Lipschitz-continuous hypersurface). This partition is a function of an evolution
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parameter t ∈ [0, +∞[ that will be called time2:
{

Ω = Ωin(t) ∪ Γ(t) ∪ Ωout(t)
Γ(t) = ∂Ωin(t) = ∂Ωout(t)

(4.14)

Figure 4.9 shows an example of 2D image, with the abstract deformable model as
we would like it to look like after segmenting the image.

Figure 4.9. Abstract Deformable Model: left image is the 2D synthetic data;
right image is the 2D abstract deformable model.

4.4.2 Region descriptors

Region descriptors are real functions of the image intensity I, and of Ωin and Ωout.
We consider:

{

kin(x, t) = − logPin(x, t)
kout(x, t) = − logPout(x, t) (4.15)

where Pin(x, t) (resp. Pout(x, t)) is the probability that x is in Ωin(t) (resp. Ωout(t)).
Gaussian descriptors were first introduced by Zhu and Yuille [196]. They are

“fully automatic” in the sense that no user-defined parameter is necessary to their
definition. They are based on region probabilities defined by Gaussian distributions:

Pin(x, t) =
1√

2π σin(t)
exp(− (I(x)− µin(t))

2

2σ2in(t)
) (4.16)

A similar expression is used for the definition of Pout(x, t). Here µin(t) and σ
2
in(t) are

respectively the mean and the variance of the image intensity over Ωin(t):

µin(t) =

∫

Ωin(t)
I(x) dx

∫

Ωin(t)
dx

, σ2in(t) =

∫

Ωin(t)
(I(x)− µin(t))

2 dx
∫

Ωin(t)
dx

This means that the histograms of the intensity in Ωin(t) and Ωout(t) are modeled by
Gaussian distributions. Those descriptors were also used extensively when Paragios

2this “artificial” time has nothing to do with the notion of physical time.
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introduced the concept of Geodesic Active Regions [137], for unsupervised image
segmentation, supervised texture segmentation [139], and detection and tracking of
moving objects [138].

4.4.3 Boundary descriptors

The boundary descriptor kb, which is sometimes called edge indicator, is usually a
real function of ∇I. We took the classical expression inherited from geodesic active
contours (see for example Caselles et al. [23] or Paragios [137]):

kb(x) =
1

1 + ‖∇I(x)‖2

γ2

where γ is a user-defined parameter.
To make this descriptor “fully automatic”, it is possible to use the mean gradient

magnitude in the entire image and set:

γ =

∫

Ω(t)
‖∇I(x)‖ dx
∫

Ω(t)
dx

.

This choice gave very good results on almost all the images we segmented.
Among other possibilities for boundary-based descriptors, we must mention the

excellent work of Xu and Prince [189, 191, 190]. The construction of a new gradient
information, using a somehow anisotropic diffusion technique to extend the local
gradient information in the whole image, has been recently used together with the
Level-Sets formalism in [140].

4.4.4 Segmentation as an optimization process

Composite energy functional

We see the process of segmentation of the image as the minimization of an energy

functional, also called objective function. We decided to use a composite energy
functional which comprises region-based and boundary-based terms. We took:

J(t) = ζ

∫

Ωin(t)

kin(x, t) dx+ ζ

∫

Ωout(t)

kout(x, t) dx+ η

∫

Γ(t)

kb(x) dσ (4.17)

where dx, dσ, ζ and η are respectively the Lebesgue measures of IRd and Γ(t), and
two user-defined positive scalar parameters.

The integrands in 4.17 are called descriptors, and contain all of the information
that is being extracted from the image. The functions kin and kout are the region

descriptors, and kb is the boundary descriptor. The punctual values of the region
descriptor kin (resp. kout) are supposed to be all the smaller as the probability to be
in the interior (resp. exterior) of the object to be segmented is high. Similarly, the
punctual values of the boundary descriptor are supposed to be all the smaller as the
probability to be near a physical contour in the image is high.
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The scalar parameters ζ and η may be adjusted to give more weight to the region-
based integrals or the boundary-based integrals. The choice of ζ and η depends on
the application specificities (quality and contrast of the images, image scale3, etc.)
and of the confidence of the user in the different descriptors.

Minimization of the energy functional

The evolution of the partition is totally defined by the evolution of the interface Γ
between Ωin(t) and Ωout(t). The evolution (or motion) of Γ is defined by a speed field
V(p, t), where p is the parameter corresponding to the chosen parameterization of Γ:

∂Γ(p, t)

∂t
= V(p, t). (4.18)

We recall that the evolution of a hypersurface under an intrinsic (i.e. independent
of the parameterization of the hypersurface) speed field depends only on the normal
component of the speed (see Keriven [84, p. 40]).

The minimization of J is done by a gradient descent defined by the evolution
equation (4.18). Several proofs have been proposed for the derivation of J . The most
correct approach can be found in [79]. It shows that the evolution equation (4.18)
implies that the temporal derivative of J is given by:

dJ

dt
= ζ

∫

Ωin(t)
∂kin
∂t

dx+ ζ
∫

Ωout(t)
∂kout
∂t

dx+
∫

Γ(t)
(ζ (kin − kout) + η (kb κM (p, t) +∇kb))(V.n) dσ

where n and κM are respectively the normal (directed from Ωin(t) to Ωin(t)) and
the mean curvature of the hypersurface Γ(t). In the case of time-independent region
descriptors, the speed that minimizes the energy functional is consequently given by:

V = ζ (kout − kin)n− η (kb κM (x, t)n+∇kb). (4.19)

The evolution equation (4.18) will be embedded into the Level-Sets formulation de-
scribed in section 4.3, and the flow (4.19) will be implemented using the different flows
detailed in section 4.3.2. Note that V is intrinsic since it depends only on intrinsic
features of Γ(t). In the case of time-dependent region descriptors, other additive terms
appear in (4.19) because of the two first terms in dJ

dt
. But in the particular case of

the Gaussian descriptors defined by (4.15) and (4.16), it is relatively easy to prove4

that the two first terms in dJ
dt
are null, and that the speed that minimizes J is still

given by (4.19).
The segmentation process consists in applying the evolution equation defined by

(4.18) and (4.19) to a user-defined initial condition:

(Ωin(0),Ωout(0),Γ(0)) = (Ω
0
in,Ω

0
out,Γ

0)

The result of the segmentation process is given by the “limit” of the triplet (Ωin,Ωout,Γ).

3Gaussian pre-smoothing of the image.
4All the vector analysis theorems needed for the proof are recalled in [79].
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4.5 Segmentation with Fast-Marching algorithm

If we consider in equation (4.5) the particular case of a motion equation with a speed
function F > 0, hence the interface always moves outward. One way to characterize
the position of the interface is to compute the arrival time T (x) of the interface as
it crosses each point. Embedding this hypothesis in the level-set framework, a new
equation is derived that determines the evolution of the surface T (x) given by

T (C(x, t)) = t ⇒ ∇T · Ct = 1

⇒ ∇T ·
(

F
∇T
|∇T |

)

= 1

⇒ F · |∇T | = 1 (4.20)

that can be interpreted as: the gradient of arrival time is inversely proportional to the
speed of the interface. This equation is the stationary case of the Hamilton-Jacobi
formulation for propagating fronts where the time is disappeared, and if the speed is
a function of the position of the front only, the equation reduces to what is known as
the Eikonal equation equation, extensively studied in part I.

This particular equation (4.20) has also been used for surface extraction, since
it has the same advantages as the Level-Sets formulation, detailed in section 4.3.
In [111], Malladi and Sethian use the Fast-Marching algorithm in order to give a
fast and rough initialization to a costly segmentation Level-Sets formulation. The
Level-Sets model is based upon a composite flow, as shown in equation (4.11), for the
segmentation of the cortex. The result of this segmentation was popularized by being
advertised on the front cover of the American Scientist Journal [162]. They use as a
speed function the following expression

F (x) = e−α|∇Iσ(x)|, α > 0 (4.21)

where the speed has values very close to zero near high image gradients of the
smoothed image Iσ. This expression is input in the Eikonal equation equation

|∇T (x)| = 1

F (x)
(4.22)

The Fast-Marching in three dimension (see section 2.1) is then employed to march
ahead. This helps to construct very quickly a good initial guess on the final surface.
Then they input the final function T (x) as an initial condition φ(x, t = 0) = T (x), and
iterate equation (4.11) a few time-steps with finite difference approximation schemes.

In practice the marching method is employed to march until a fixed time or until
the size of the heap does not change very much (see section 1.3.2 for details on the
heap used in the Fast-Marching algorithm) between two successive time increments.

4.6 Medical imaging applications of the Level-Sets

The Level-Sets models have already been used for a wide variety of applications,
among them stereo problem [50], image classification [152], tracking of moving objects
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[78], or modeling deformations of solid objects [185] among others. But the most
important set of applications of the Level-Sets has been done in medical imaging,
where their interesting properties in handling topology changes are very useful for
segmenting the very complex anatomical shapes.

4.6.1 Cortex segmentation

Since initial contributions on 3D segmentation of medical images using the Level-Sets
models by Malladi and Sethian [110, 111], the very complex shape of the cortical
surface has attracted numerous contributions, due to the interesting properties of
the Level-Sets formulation. One example of brain tissue segmentation is shown in
figure 4.10, where the algorithm used is the Fast-Marching on the basis of the work
presented in [111].

Figure 4.10. Segmentation result on the brain: On the basis of the model
defined in [111], we segment the brain complex surface with the Fast-Marching

algorithm, using a speed which is a simple distance function to an a priori mean value
inside the white matter of the brain; formally P(x) = max (I(x)− Imean, 0) + w.

In [67], authors proposed a fast implementation of the Level-Sets based on a
semi-implicit formulation of the discretized evolution equation, based on similar use
of these schemes for anisotropic diffusion filtering in [182].

An original method is presented in [7] where the authors propose to segment
brain surfaces using sequentially a registration technique, and a Level-Sets model.
However, it is not a real cooperation between both techniques, since the initialization
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of any parameter of the Level-Sets are tuned on the basis of the first results obtained
through the registration process. We will see in the following that the Level-Sets

can cooperate with other fast segmentation techniques to enhance their preliminary
results.

Several works have been developed on the basis of the simultaneous segmentation
of the grey and white matter of the brain, using coupled curve evolution equations

for segmenting both complex surfaces [193]. Main idea is to introduce a term relative
to the distance between the two surfaces [194, 195]. In [68], this method is improved
with a new scheme that computes the evolution of a new function which remains
a distance function across iterations, and leads to better measurements of the dis-
tance between the two surfaces. And in [66] authors introduced the first geometric
variational formulation for the coupled surfaces.

4.6.2 Brain Vessels

In the same region of the body, brain vessels extraction has attracted lots of attention
from the computer vision community, with developments of very interesting dedicated
Level-Sets implementations for thin tubular structure extraction.

We made a test on brain vessel extraction: the model is based on Gaussian
region descriptors, and the initialization for kin and kout has been done using aMDL

(minimum description length), with hypothesis that the image grey level information
is a mixture of two Gaussian distributions. Descriptors are shown in figure 4.12.
In figure 4.12 we show iterations of the segmentation of the brain vessels, in the
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Figure 4.11. Gaussian region descriptors for brain vessels: assuming that
the image is a mixture of two Gaussian distribution, theMDL classical computation
of mean and variances has led to a model with (µin = 211.09, σin = 119.902) and
(µout = 18.9269, σout = 18.8822).

dataset already displayed in figure 3.17, with the descriptors shown in figure 4.12.
The propagation starts from one part of the vessels and propagates in the whole set.
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Computing time for extracting the complete brain vessels is more than an hour, an a
standard Sun workstation (300 MHz cpu).

In this field, Lorigo et al. [107] have developed flows using the Hessian information
[108], co-dimension 2 evolution scheme for the extraction of thin curves in 3D [106],
with application to the brain vessels. Same target was followed in [177] where the
authors use a flow based on the divergence of the gradient in the image. Both works
achieve extraction of thin curves where even Level-Sets classical formulation, as shown
in figure 4.12, fails. However, the computing cost to achieve is too important. In
the next chapter, we will settle another framework for segmentation in interactive
computing time.

4.7 Summary

In this chapter we have explained an abstract deformable representation of the bound-
ary between two regions, as used in [196]. The formulation of the evolution of the
interface between the regions, defined with region descriptors, has been already stud-
ied for image segmentation in [137] with Level-Sets models. In the following we are
going to develop improvements of this framework, introducing user interactivity on
the interface, developments of algorithms to accelerate the speed of the computations,
using the Fast-Marching first used for segmentation in [111]. On this basis we will
show several applications of our framework.
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Figure 4.12. Extracting the brain vessels with region-based forces


